EECE 200

Computer Hardware

Haitham Akkary

Outline

- The Digital Revolution
- Digital Systems and Circuits
- Computer Organization
- Hardware Courses in ECE
- Career Opportunities

Digital vs. Analog

- Two basic ways of representing information:
 - Analog: Take any value across a continuous range (voltage, current)
 - Digital: Take only values from a discrete set
 - Decimal: {0,1,...,9}, Binary: {0,1} or {T,F} or {Low,High}

Waveform is represented by a series of numbers rather than a voltage or current, as in analog systems.

The Digital Revolution

 Digital systems have inputs and outputs that are represented by Binary digits (Bits) or groups of bits.

- Examples: General-purpose digital computers, digital cameras, digital versatile disks (DVDs), digital telephones, digital television, personal data assistants (PDAs)
- Applications: communication, business, traffic control, space, science, medicine, Internet, education, entertainment, weather ...

Behind the Digital Revolution

Economy

 Commonly used circuits can be integrated into chips and mass-produced at low cost and used in different products such as calculators, digital watches, ...

Steadily advancing technology

- Moores Law: chip capacity doubles every two years
- Digital designers try to accommodate advances in technology while designing. An example is multi-core processors

Inside the Processor

AMD Barcelona: 4 processor cores

Manufacturing ICs

Yield: proportion of working dies per wafer

AMD Opteron X2 Wafer

- X2: 300mm wafer, 117 chips, 90nm technology
- X4: 45nm technology

Combinational Circuits

- Take binary inputs, process them, and produce binary outputs
- Some typical combinational circuits:
 - Adders/Subtractors
 - Multipliers
 - Decoders/Encoders
 - Multiplexers/Demultiplexers

Switches: Basic Elements of Physical Implementations

• Implementation of a simple circuit:

open switch (if A is "0" or unasserted) and turn off light bulb (Z)

close switch (if A is "1" or asserted) and turn on light bulb (Z)

$$Z = A$$

Computing with Switches

• Compose switches into more complex (Boolean) functions:

Two fundamental structures: series (AND) and parallel (OR)

Logic Gates

• <u>Inverter</u>: Output is opposite of input

$$-Y = X'$$

AND: Output is 1 iff all inputs are 1

• OR: Output is 1 iff at least one input is 1

Truth Table

X	Υ
0	1
1	0

X	Υ	X.Y
0	0	0
0	1	0
1	0	0
1	1	1

X	Y	X+Y
0	0	0
0	1	1
1	0	1
1	1	1

Logic Gates

NAND: Output is 0 iff all inputs are 1

Truth Table

X	Y	NAND
0	0	1
0	1	1
1	0	1
1	1	0

NOR: Output is 0 iff at least one input is 1

X	Y	NOR
0	0	1
0	1	0
1	0	0
1	1	0

Logic Gates

• XOR: Output is 1 iff one of the inputs is 1 but not both

X	Y	X⊕Y
0	0	0
0	1	1
1	0	1
1	1	0

Number Systems and Codes

 A digital designer must establish a correspondence between binary digits and real-life numbers, events and conditions

Binary Number Systems

- Binary: radix = 2
 - Used to represent numbers in a digital system
 - Reliable since only 2 values need to be distinguished
 - $-EX: 110.01 = 1x4 + 1x2 + 0x1 + 0x0.5 + 1x0.25 = 6.25_{10}$
 - In general the value is given by:

$$B = \sum_{i=-n}^{p-1} b_i 2^i$$

Example 1: Binary Addition

- Similar to decimal addition:
 - 0+0=0, with a carry of 0
 - 0+1=1+0=1, with a carry of 0
 - 1+1=10 = 0, with a carry of 1
- Example:

```
carry: 1 0 1 1 1 1 augend: 1 0 1 1 0 1 addend: +1 0 0 1 1 1 1 sum: 1 0 1 0 1 0 0
```

- Basic operation: Adding binary numbers is done by simply adding bits from right to left, while rippling the carry:
 - (Sum, Carry_OUT) = A plus B plus Carry_IN

Example 1: 1-Bit Binary Adder

• Truth table for a 1-bit adder:

X	Y	CIN	S	COUT
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

$$S = X \oplus Y \oplus CIN$$

$$COUT = X \cdot Y + X \cdot CIN + Y \cdot CIN$$

Example 1: 1-Bit Adder Circuit

$$S = X \oplus Y \oplus CIN$$

$$COUT = X \cdot Y + X \cdot CIN + Y \cdot CIN$$

Example 1 : 4-Bit Adder Circuit

Simply build a 1-bit adder and replicate it 4 times.

Example 2: A Simple ALU

If SEL=0, F = A + BElse if SEL=1, F = not(B)

What is a Computer?

- A digital system that processes information according to a sequence of internally stored machine instructions called a *program*.
 - Both the information to be processed and the instructions used to process them are represented as binary data.
- Different types of computers
 - Servers
 - General purpose desktop and laptop computers
 - Ultra-mobile internet devices (smart phones, e.g., iphone)
 - Special purpose or embedded computers

General Purpose Computers

Embedded Computers

Pocket PC

Airplanes – Computers that Fly!

The Five Components of *Every* Computer

Input and Output Devices

- Input devices read data from the outside environment
 - Keyboard, mouse, joystick, electronic sensor
- Output devices send processed results to the external environment
 - Display monitor, LCD, printer, transducer
- Some devices provide input and output functions
 - Modems, network adapters

Memory

- Memory is used to store instructions (application programs) and data both inside and outside the computer.
- Primary memory
 - Implemented using silicon technology
 - Main memory (DRAM, ROM)
 - Cache memory (SRAM)
- Secondary memory
 - Implemented using magnetic, optical, or silicon technologies
 - Hard disks
 - Magnetic tapes
 - DVDs
 - Flash drives/memory sticks

Processor

- The "brains" of the computer
 - Microprocessors
 - Microcontrollers
 - Special-purpose processors (e.g. GPUs, NPUs, DSPs)

Datapath

- The part of the processor responsible for decoding and executing instructions
- Consists of arithmetic and logic units and temporary storage elements called *registers*

Control

- The part of the processor that coordinates the fetching and execution of instructions
- Also coordinates the operation of input, output, memory, and arithmetic/logic units

MIPS R2000 Datapath

Instruction Set Architecture

- The interface between the processor hardware and the lowest level software
 - Includes all the information needed to write a machine language program (e.g. instructions, registers, support for memory and I/O access, etc...)

Inside the Personal Computer (PC)

Intel D875PBZ motherboard. Picture courtesy of Intel Corporation.

The PC Motherboard – Back View

PC Hardware

PC Hardware (2)

Hard Disk Drive

DVD/CD-ROM Drives

Computer = Hardware + Software

- Computers rely on specialized software programs to manage the hardware and simplify the task of programming the computer.
 - Operating systems
 - Compilers
 - Assemblers
 - Linkers
 - Loaders

From C++ to Machine Code

Hardware Courses at ECE

ECE/CCE Core

- EECE 320 Digital Systems Design
- EECE 321 Computer Organization
- EECE 321L Computer Organization Lab

Hardware Focus Area

- EECE 421 Computer Architecture
- EECE 422 Parallel Computer Architecture and Programming
- EECE 425 Embedded Systems Design

Technical Electives

- EECE 621 Advanced Computer Architecture
- EECE 623 Reconfigurable Computing
- EECE 624 Digital Systems Testing

Career Opportunities

Computer Architect

- Instruction set and microarchitecture design
- Special purpose processor design (graphics processors, network processors, DSPs)

Hardware Engineer

- System- and board-level hardware designs using microcontrollers, CPLDs, or FPGAs
- Integrated circuit component design

CAD Engineer

Developing tools for logic synthesis, technology mapping, and placement and routing

System Software Developer

- Operating systems
- Compilers
- Software drivers and libraries for specialized processors (e.g. graphics, networking, etc...)

